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The present paper is concerned with the frictionless drawing of a thin 
tube through a conical die, assuming that the end section of the tube is 
free of stress. This problem is related to the problem of deep-drawing, 
formulated and solved by Hill [l 1 subject to the yield criterion of 
Tresca. 

Let us consider the problem of the draw- 
ing of a thin tube using the usual yield 
criterion and the corresponding relations 
between the stress components and the rate 
of strain components. 

The initial distance of a particle in the 
tube from the symmetry axis will be denoted 
by r,, and the end-section radius by a,, (Fig. 
1). The distance of this particle from the 
axis will be denoted by r when the radius of 
the end section is o (Fig. 2). Fig. 1. 

The radial velocity v is conveniently measured relative to the radius 
as the time scale, and the initial radius ae can be set eqaal to unity. 

The stress- and strain-rate fields in the conical tube will be deter- 

mined by the stress components al, 02 and by the strain-rate components 

c1* E2 in the meridional and circumferential directions so that 

C?V 

e1 = zr, ea = + 

The differential equation of equilibrium of a conical tube of thick- 
ness h has the usual form 

1453 
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Wa) 
-f 

h (al- 62) 

ar r =O 

and the yield criterion is 

(1) 

(2) 

The relation between the stress- and 

strain-rate components is of the form 

El Ez El e2 

ziggas im/aa, Or 2x= 262 - 61 

which leads to 

aV 2a1-6a V 
-_~- 
ar-262-6g r (3) 

Usually, the condition for the incompressibility of the material is 

written in the form 

(4) 

The above system consists of four equations in four unknown fUnCtiOnS. 

namely. 0I, 02, v and h. It belongs to the hyperbolic type and has two 

families ro and a of real characteristics. The family ru is given by the 

differential equations 

dv 26l-62 dr dH 62 dr da1 
-=2j-_7r’ 

-=--_- 
V H 61 r 61 

while the family a is given by 

dH 
dr= vda, 251-62 (Hz rh) yq-=-262_61 r 

Clearly, the initial conditions are 

(5) 

( 6) 

r = rO, h = h, for a=l 

and the boundary condltions are 

61= 0, v=l for r. = 1 

Let us express the stress components UI and o2 in terms of a new vari- 

able 4 using the substitution 

so that $= 2a/3 corresponds to OI = 0. 
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It is clear that the differential equations given by Equation (5) can 

now be rewritten in the form 

dv sin (cp + n: / 6) dr dH cos (cp +!n / 6) dr 

sin (cp - n / 6) 7 ’ 
-- -=- 

H - cos (9, -- JC / 6) f 
+t=+-;Jdp (7) 

V 

while the differential equation given by Equation (6) can be rewritten 
in the form 

Fig. 3. 

dr =vda, 
dH sin (cp + n / 6) dr 
- - H - sin (cp - n i 6) 7 (8) 

Equations (‘7). and (8). together with 
the initial and boundary conditions, show 
that for II = 1 

Moreover, for rO = 1 

h, 

Numerical solutions of the differential 
equations given by Equations (7) and (81, 
using the method of finite differences, 
are shown in Figs. 3 and 4. The continuous 

curves are graphs of o1 = u and h as functions of r for different values 
of o between 1.0 and 0.5 (in steps of 0.1). The dashed curves show graphs 
of u and h as functions of r for r. between 0.5 and 1.0 (in steps of 

0.1). 

Let us now consider the problem of the drawing of a thin tube using 
the linearized plasticity conditions and the corresponding relations be- 

tween stress- and strain-rate components, as put forward by Prager [ 3 I. 

The differential equation for the equilibrium of a thin tube of thick- 
ness h is, as before 

Wed 
ar+ 

h (Q1- 52) 
r =O (9) 

while the yield criterion is 

(10) 
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The stress- and the strain-rate components 
formulas 

are related by the simple 

The usual condition for the incom- 
pressibility of the material is now 

67 OB 

Fig. 4. 

The above system of equations consists of four equations in four un- 

known functions, namely, aI, u2, v and h. It also belongs to the hyper- 
bolic type and has two families ro ‘and cz of real characteristics. 

The r. family is defined by the differential equations 

dv dr d&I ci2 dr da1 
-=- _=---- 
v Pr> H 61 I" a1 

(13) 

while the family a is defined by the differential equations 
dH dr 

dr = &a, 
rr-=pr 114) 

These equations, together with the 
initial and boundary conditions, enable 
us to obtain the solution in closed 

form. 

If the constant parameter p f 1. then 
it is convenient to use the quantities 

remembering that the parameter s lies 
between 3 and 00. The variables r, r,, and 
a are related by 

PO 
m _ Pm = om or r,l+r* _ ,i+Y= i _ al+* 

Fig. 5. 

The stress component al = u is determined by 
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and the radial velocity tr and thickness h by 

a k ( ) 0 
I--u. 

v=y , h=h, 1 

(15) 

(16) 

The integral which enters into the previous equations for values Of 

m-l 

p=,+1 

corresponding to integral values of a. can be expressed in terms of 
elementary functions. Thus, for example, when p = l/2 or m = 3, it is 

clear that 

If, on the other hand, p = 1, then the solution of the problem is 

particularly simple, The variables r, r,, and a are related by 

roz - i-2 = 1 __ a2 

The stress component al = 0 is given 

by 
0 

-& 
6s 

and the radial velocity v and the thick- 
ness h are given by 

a 
LIZ=- 

P ’ h = h, 
015 a6 a7 08 LIJ r 10 

Fig. 6. Numerical solutions based on Equations 
(15) and (161 with p = l/2 are plotted 

in Figs. 5 and 6. The continuous curves show 01 = u and h as functions 
of r for values of a between 1.0 and 0.5 (in steps of 0.1). The dashed 
curves show u and h as functions of r for values of rO between 0.5 and 
1.0 (also in steps of 0.1). Comparison of o and h obtained by e numerical 
solution of the differential equations (7) end (8) by the method of 
finite differences, with the values of (I end h obtained from Equation 
(15) end (161, shows a considerable difference between them. 
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