THE DRAWING OF A THIN TUBE THROUGH A CONICAL DIE

(VOLOCHENIE TONKOI TRUBY CHEREZ KONICHESKUIU MATRITSU)

PMM Vol.24, No.5, 1960, pp. 959-961
V.V. SOKOLOVSKII
(Moscow)
(Received 2 July 1960)

The present paper is concerned with the frictionless drawing of a thin tube through a conical die, assuming that the end section of the tube is free of stress. This problem is related to the problem of deep-drawing, formulated and solved by Hill [1] subject to the yield criterion of Tresca.

Let us consider the problem of the drawing of a thin tube using the usual yield criterion and the corresponding relations between the stress components and the rate of strain components.

The initial distance of a particle in the tube from the symmetry axis will be denoted by r_{0} and the end-section radius by a_{0} (Fig. 1). The distance of this particle from the axis will be denoted by r when the radius of the end section is a (Fig. 2).

Fig. 1.

The radial velocity v is conveniently measured relative to the radius as the time scale, and the initial radius a_{0} can be set equal to unity.

The stress- and strain-rate fields in the conical tube will be determined by the stress components σ_{1}, σ_{2} and by the strain-rate components $\epsilon_{1}, \epsilon_{2}$ in the meridional and circumferential directions so that

$$
\varepsilon_{1}=\frac{\partial v}{\partial r}, \quad \varepsilon_{2}=\frac{v}{r}
$$

The differential equation of equilibrium of a conical tube of thickness h has the usual form

$$
\begin{equation*}
\frac{\partial\left(h \sigma_{1}\right)}{\partial r}+\frac{h\left(\sigma_{1}-\sigma_{2}\right)}{r}=0 \tag{1}
\end{equation*}
$$

and the yield criterion is

$$
\begin{equation*}
\Phi^{2}=\sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2}=\sigma_{s}^{2} \tag{2}
\end{equation*}
$$

The relation between the stress- and strain-rate components is of the form

$$
\frac{\varepsilon_{1}}{\partial \Phi / \partial \sigma_{1}}=\frac{\varepsilon_{2}}{\partial \Phi / \partial \sigma_{2}}, \quad \text { or } \quad \frac{\varepsilon_{1}}{2 \sigma_{1}-\sigma_{2}}=\frac{\varepsilon_{2}}{2 \sigma_{2}-\sigma_{1}}
$$

which leads to

$$
\begin{equation*}
\frac{\partial v}{\partial r}=\frac{2 \sigma_{1}-\sigma_{2}}{2 \sigma_{2}-\sigma_{1}} \frac{v}{r} \tag{3}
\end{equation*}
$$

Usually, the condition for the incompressibility of the material is written in the form

$$
\begin{equation*}
\frac{1}{h}\left(\frac{\partial h}{\partial a}+v \frac{\partial h}{\partial r}\right)+\frac{\partial v}{\partial r}+\frac{v}{r}=0 \tag{4}
\end{equation*}
$$

The above system consists of four equations in four unknown functions, namely, $\sigma_{1}, \sigma_{2}, v$ and h. It belongs to the hyperbolic type and has two families r_{0} and a of real characteristics. The family r_{0} is given by the differential equations

$$
\begin{equation*}
\frac{d v}{v}=\frac{2 \sigma_{1}-\sigma_{2}}{2 \sigma_{2}-\sigma_{1}} \frac{d r}{r}, \quad \frac{d H}{H}=\frac{\sigma_{2}}{\sigma_{1}} \frac{d r}{r}-\frac{d \sigma_{1}}{\sigma_{1}} \tag{5}
\end{equation*}
$$

While the family a is given by

$$
\begin{equation*}
d r=v d a, \quad \frac{d H}{H}=-\frac{2 \sigma_{1}-\sigma_{2}}{2 \sigma_{2}-\sigma_{1}} \frac{d r}{r} \quad(H=r h) \tag{6}
\end{equation*}
$$

Clearly, the initial conditions are

$$
r=r_{0}, \quad h=h_{0} \quad \text { for } a=1
$$

and the boundary conditions are

$$
\sigma_{1}=0, \quad v=1 \quad \text { for } \quad r_{0}=1
$$

Let us express the stress components σ_{1} and σ_{2} in terms of a new variable ϕ using the substitution

$$
\left.\begin{array}{l}
\sigma_{1} \\
\sigma_{2}
\end{array}\right\}=\frac{2 \sigma_{8}}{\sqrt{3}} \cos \left(\varphi \mp \frac{\pi}{6}\right)
$$

so that $\phi=2 \pi / 3$ corresponds to $\sigma_{1}=0$.

It is clear that the differential equations given by Equation (5) can now be rewritten in the form

$$
\begin{equation*}
\frac{d v}{v}=-\frac{\sin (\varphi+\pi / 6)}{\sin (\varphi-\pi / 6)} \frac{d r}{r}, \quad \frac{d H}{H}=\frac{\cos (\varphi+\pi / 6)}{\cos (\varphi-\pi / 6)} \frac{d r}{r}+\tan \left(\varphi-\frac{\pi}{6}\right) d \varphi \tag{7}
\end{equation*}
$$

while the differential equation given by Equation (6) can be rewritten in the form

$$
\begin{equation*}
d r=v d a, \quad \frac{d H}{H}=\frac{\sin (\varphi+\pi / 6)}{\sin (\varphi-\pi / 6)} \frac{d r}{r} \tag{8}
\end{equation*}
$$

Equations (7). and (8), together with the initial and boundary conditions, show that for $a=1$

$$
\begin{aligned}
& r^{2}=\frac{\sqrt{3}}{2 \sin \varphi} \exp \left[-\sqrt{3}\left(\frac{2 \pi}{3}-\varphi\right)\right] \\
& r^{2}=\frac{\sqrt{3}}{2 \sin \varphi} \exp \left[+\sqrt{3}\left(\frac{2 \pi}{3}-\varphi\right)\right]
\end{aligned}
$$

Moreover, for $r_{0}=1$

$$
h=\frac{h_{0}}{\sqrt{a}}
$$

Numerical solutions of the differential equations given by Equations (7) and (8), using the method of finite differences, are shown in Figs. 3 and 4. The continuous curves are graphs of $\sigma_{1}=\sigma$ and h as functions of r for different values of a between 1.0 and 0.5 (in steps of 0.1). The dashed curves show graphs of σ and h as functions of r for r_{0} between 0.5 and 1.0 (in steps of $0.1)$.

Let us now consider the problem of the drawing of a thin tube using the linearized plasticity conditions and the corresponding relations between stress- and strain-rate components, as put forward by Prager [2].

The differential equation for the equilibrium of a thin tube of thickness h is, as before

$$
\begin{equation*}
\frac{\partial\left(h \sigma_{1}\right)}{\partial r}+\frac{h\left(\sigma_{1}-\sigma_{2}\right)}{r}=0 \tag{9}
\end{equation*}
$$

while the yield criterion is

$$
\begin{equation*}
\Phi=\mu \sigma_{1}-\sigma_{2}=\sigma_{s} \quad(1 / 2 \leqslant \mu \leqslant 1) \tag{10}
\end{equation*}
$$

The stress- and the strain-rate components are related by the simple formulas

$$
\frac{\varepsilon_{1}}{\partial \Phi / \partial \sigma_{1}}=\frac{\varepsilon_{2}}{\partial \Phi / \partial \sigma_{2}}, \quad \text { or } \quad \varepsilon_{1}+\mu \varepsilon_{2}=0
$$

which give

$$
\begin{equation*}
\frac{\partial v}{\partial r}+\mu \frac{v}{r}=0 \tag{11}
\end{equation*}
$$

The usual condition for the incompressibility of the material is now

$$
\begin{equation*}
\frac{1}{h}\left(\frac{\partial h}{\partial a}+v \frac{\partial h}{\partial r}\right)+(1-\mu) \frac{v}{r}=0 \tag{12}
\end{equation*}
$$

The above system of equations consists of four equations in four unknown functions, namely, $\sigma_{1}, \sigma_{2}, v$ and h. It also belongs to the hyperbolic type and has two families r_{0} and a of real characteristics,

The r_{0} family is defined by the differential equations

$$
\begin{equation*}
\frac{d v}{v}=-\mu \frac{d r}{r}, \quad \frac{d H}{H}=\frac{\sigma_{2}}{\sigma_{1}} \frac{d r}{r}-\frac{d \sigma_{1}}{\sigma_{1}} \tag{13}
\end{equation*}
$$

while the family a is defined by the differential equations

$$
\begin{equation*}
d r=v d a, \quad \frac{d H}{H}=\mu \frac{d r}{r} \tag{14}
\end{equation*}
$$

These equations, together with the initial and boundary conditions, enable us to obtain the solution in closed form.

If the constant parameter $\mu \neq 1$, then it is convenient to use the quantities $\dot{\rho}^{m}=r^{1+\mu}, \quad \rho_{0}^{m}=r_{0}^{1+\mu}, \quad \alpha^{m}=1-a^{1+\mu}$

$$
m=\frac{1+\mu}{1-\mu}
$$

remembering that the parameter lies between 3 and ∞. The variables r, r_{0} and a are related by
$\rho_{0}{ }^{m}-p^{m}=a^{m} \quad$ or $\quad r_{0}{ }^{1+\mu}-r^{1+\mu}=1-a^{1+\mu}$

The stress component $\sigma_{1}=\sigma$ is determined by

$$
\begin{equation*}
(1-\mu) \frac{\sigma}{\sigma_{s}}=\frac{1}{\rho_{0}}-1+\frac{\alpha^{m}}{P_{0}} \int_{1}^{\rho_{0}} \frac{d \xi}{\alpha^{m}-\xi^{m}} \tag{15}
\end{equation*}
$$

and the radial velocity v and thickness h by

$$
\begin{equation*}
v=\left(\frac{a}{r}\right)^{\mu}, \quad h=h_{0}\left(\frac{r_{0}}{r}\right)^{1--\mu} \tag{16}
\end{equation*}
$$

The integral which enters into the previous equations for values of

$$
\mu=\frac{m-1}{m+1}
$$

corresponding to integral values of m, can be expressed in terms of elementary functions. Thus, for example, when $\mu=1 / 2$ or $m=3$, it is clear that

$$
\frac{\sigma}{2 \sigma_{\theta}}=\frac{1}{\rho_{0}}-1+\frac{\alpha}{\sqrt{3} \rho_{0}}\left[\tan ^{-1} \frac{\sqrt{3} \xi}{\xi+2 \alpha}+\frac{\tau}{\sqrt{3}} \ln \frac{\sqrt{\xi^{2}+\xi \alpha+\alpha^{2}}}{\xi-\alpha}\right]_{1}^{\rho_{0}}
$$

If, on the other hand, $\mu=1$, then the solution of the problem is particularly simple. The variables r, r_{0} and a are related by

$$
r_{0}^{2}-r^{2}=1-a^{2}
$$

Fig. 6.

The stress component $\sigma_{1}=\sigma$ is given by

$$
\frac{\sigma}{\sigma_{8}}=\ln \frac{a}{r}
$$

and the radial velocity v and the thickness h are given by

$$
v=\frac{a}{r}, \quad h=h_{0}
$$

Numerical solutions based on Equations (15) and (16) with $\mu=1 / 2$ are plotted
in Figs. 5 and 6. The continuous curves show $\sigma_{1}=\sigma$ and h as functions of r for values of a between 1.0 and 0.5 (in steps of 0.1). The dashed curves show σ and h as functions of r for values of r_{0} between 0.5 and 1.0 (also in steps of 0.1). Comparison of σ and h obtained by a numerical solution of the differential equations (7) and (8) by the method of finite differences, with the values of σ and h obtained from Equation (15) and (16), shows a considerable difference between them.

BIBLIOGRAPHY

1. Hill, R., Matematicheskaia teoriia plastichnosti (Mathematical Theory of Plasticity). Gostekhizdat, 1956.
2. Prager, V., Teoriia ideal'no plasticheskikh tel (Theory of Perfectly Plastic Bodies). IIL, 1956.
